Welcome to the Storm Dynamics Group!

Tornado near Forgan, OK, on 17 May 2019. © J. Dahl.

The Storm Dynamics Group's research efforts are focused on the dynamics of convective storms (including supercells and tornadogenesis) as well as meso- and synoptic-scale dynamics. Severe convective storms have been studied for many decades, but there are still gaping holes in our knowledge base. One of the questions my group focuses on is where the rotation that initially spins up the tornado, and then maintains it, originates from. Is it generated within the storm or is it imported from the environment of the storm? What role does surface friction play, and do the different contributions vary from case to case? To tackle these questions, we primarily use high-resolution idealized numerical simulations (see the animation below) as well we mobile platforms (such as the the Ka-band radars). One particularly useful technique to analyze numerical-model simulations involves forward trajectories, allowing us to analyze the evolution of the rotation of individual air parcels.

Related research questions address the origin and the behavior of outflow surges that are known to facilitate tornadogenesis. The overarching goal of our research efforts is to understand the basic dynamics that drive severe thunderstorms. Such knowledge will allow us to (i) understand why certain environments are conducive to severe storms such as tornadic supercells and (ii) improve the diagnosis and prediction of environments supportive of tornadic thunderstorms.

Recent work in my group in the field of mesoscale meteorology has been devoted toward summer-time convergence boundaries preceeding central European cold fronts. An exciting new research direction in our group is the connection of large-scale ascent to mesoscale atmospheric gravity waves, which play an important role in shaping regions of cloudiness and precipitation.

For more information about our research, see here.

I'm always looking for enthusiastic graduate students interested in joining our storm-dynamics group! If you have any questions about the program here at Texas Tech or about our research, please feel free to contact me!

Simulation of the Del City supercell using the Bryan cloud model (CM1). Shown are reflectivity at 2275 m AGL (shaded), vertical velocity (contours), as well as the horizontal wind vectors. See here for more details about this simulation.

Last updated in September 2019