Chapter 8 – Atmospheric Circulation and Pressure Distribution

Understanding Weather and Climate
Aguado and Burt

ATMO 1300

Single Cell Model

- Strong heating at the equator caused air to rise, diverge towards the pole, sink back to the surface and returned to the equator.
- Due to the Earth's rotation the winds would move east to west.

Three Cell Model

- Divides the circulations in each hemisphere into three cells:
 - Hadley Cell (tropics/subtropics)
 - Ferrel Cell (middle latitudes)
 - Polar Cell

帮

Hadley Cell

- Strong solar heating leads to rising air which diverges towards the poles.
 - Creates Intertropical Convergence Zone (ITCZ)
- Aloft, air moves poleward but acquires a west to east motion.
- Air descends at 20°-30° latitude to form subtropical highs.
 - Creates desert conditions
- Air moves towards the equator at the surface and a weak Coriolis force creates the NE trade winds.

Ferrel Cell

- Indirectly caused by the turning of the Hadley and Polar cells.
- Air flows north away from the subtropical high towards the subpolar lows, and acquires a large westerly component
 - westerlies

ATMO 1300

Polar Cell

- Surface air moves from polar highs to subpolar lows.
 - Subpolar lows are relatively warm
 - Polar highs are relatively cold
- Coriolis forces directs the surface winds to the west creating the polar easterlies.

Winds in the Upper Troposphere

- Winds increase with height
 - Friction is reduced or eliminated
 - Pressure gradient force is increased with height
 - Strongest in the winter
- Winds move west to east (parallel to height contours)

Polar Front / Jet Stream • Narrow, strongly sloping boundaries between warm and cold air (polar front) • Leads to strong temperature gradients, pressure gradient forces, and the formation of the polar jet stream.

Rossby Waves

- Longest waves
- Typically 3-7 Rossby waves circling the globe
- Longer wavelengths, stronger winds, and fewer in number in the winter
- Migration speed affected by:
 - Wind speed and wavelength
 - Transport warm air poleward and cold air towards the equator.
- Lead to divergence and convergence aloft

ATMO 1300

Scaling the Atmosphere

- Global Scale
- Synoptic Scale
- Mesoscale
- Microscale

Major Wind Systems • Monsoons • Foehn, Chinook, Santa Ana Winds • Katabatic Winds • Sea and Land Breeze • Valley and Mountain Breeze

