Chapter 5 - Atmospheric Moisture

Understanding Weather and Climate
Aguado and Burt

Water

- Water Vapor - water in a gaseous form, not droplets.
- Water can also achieve solid and liquid phases on Earth
 - Temperature and pressure
- Saturation – The maximum amount of water that can exist in the atmosphere as a vapor.
Evaporation and Condensation

- Evaporation – Change in phase from liquid to vapor. The process in which molecules break free of the liquid volume.
- Condensation – Change in phase from vapor to liquid. The process whereby molecules collide with the water surface and bond with adjacent molecules.
Sublimation and Deposition

- Sublimation - Change of phase from a solid into a vapor without passing through the liquid phase.
- Deposition – Change of phase from vapor to solid.

Humidity

- Humidity – an expression of the amount of water vapor in the air.
- There are several ways to measure humidity:
 - *Vapor Pressure* (Pressure)
 - *Absolute Humidity* (Density)
 - *Specific Humidity* (Mass Ratio)
 - *Mixing Ratio* (Mass Ratio)
 - *Relative Humidity* (Percentage)
 - *Dew Point Temperature* (Temperature)
Vapor Pressure

- Vapor Pressure – The part of the total atmospheric pressure due to water vapor.
- Dependencies: Temperature
- Unit: Pascal (Pa), millibar (mb), Kilopascal (kPa)

Saturation Vapor Pressure

- The vapor pressure of the atmosphere when it is saturated.
- Dependencies: Temperature
Absolute Humidity

- Absolute Humidity – The density of water vapor (mass of water vapor in a volume of air).
- Dependencies: Volume of the air
- Not widely used.

Specific Humidity

- Specific Humidity - The mass of water vapor per unit mass of air.
- Dependencies: Atmospheric pressure
- Units: grams per kilogram (g/kg)
- Widely used

\[q = \frac{m_v}{m} = \frac{m_v}{(m_v + m_d)} \]

- \(q \) = specific humidity, \(m_v \) = mass of water vapor, \(m_d \) = mass of dry air
Mixing Ratio

- Mixing Ratio - The mass of water vapor relative to the mass of the other gases.
- Offers same advantages as specific humidity

\[r = \frac{m_v}{m_d} \]

Relative Humidity

- Relative Humidity – The amount of water vapor in the air relative to the maximum amount possible.
- Dependencies: Temperature
- Unit: percentage (%)
- Widely used, but not necessarily good
Relative Humidity

(a) Specific humidity $\frac{g}{kg}$

(b) Specific humidity $\frac{g}{kg}$

Saturation specific humidity $10 \frac{g}{kg}$

$T = 14 ^\circ C$

$RH = \frac{6}{10} \times 100\% = 60\%$

Saturation specific humidity $20 \frac{g}{kg}$

$T = 25 ^\circ C$

$RH = \frac{6}{20} \times 100\% = 30\%$

© 1998 Wadsworth Publishing Company/ITP

ATMO 1300
Dew Point

• Dew Point – The temperature at which saturation would occur.
• Unit: °F, °C, K
• Widely used
Three Ways to Achieve Saturation

- Adding water vapor to the air
- Lowering the temperature to the dew point
- Mixing cold air with warm, moist air.
Mixing of Air Parcels

Effects of Curvature

- Smaller drops have more curvature.
- The evaporation rate from curved surfaces is higher relative to those which are flat.
- Curved water droplets have a higher saturation vapor pressure.
- Supersaturation (relative humidity greater than 100%) is necessary to maintain highly curved droplets.
Effects of Curvature

Effects of Solution

- Fewer water molecules existing at the surface which yield a lower evaporation rate.
- A solution requires less water vapor above the surface to stay in equilibrium.
- Offset the curvature effect allowing for droplets to form with relative humidities near 100%.
Ice Nuclei

- Saturation occurring from 0 to –4°C forms only supercooled water droplets.
- From –10 to –40°C ice or supercooled water droplets can form.
- Below –40°C saturation leads to only the formation of ice crystals.
- Ice nuclei – Particles onto which ice crystals can form when the air becomes saturated.

Cooling Air to the Dew Point

- Heating/cooling can occur in two ways.
 - Diabatic processes – Energy is removed or added.
 - Adiabatic processes – Energy is not added or removed (energy remains constant).
Diabatic Processes

- Involves the transfer of energy from higher to lower temperatures.
- Second Law of Thermodynamics – Energy moves from regions of higher to lower temperatures.
- Frequently responsible for fog formation

Adiabatic Processes

- Energy remains constant (no heat transfer).
- First Law of Thermodynamics – if heat is added there will be some combination of temperature increase and expansion.

\[\Delta H = p \cdot \Delta \alpha + c_v \cdot \Delta T \]

- For an adiabatic process:

\[0 = p \cdot \Delta \alpha + c_v \cdot \Delta T \]
\[-p \cdot \Delta \alpha = c_v \cdot \Delta T \]
Lapse Rates

- **Dry adiabatic lapse rate (DALR)** – Rate at which rising parcel of unsaturated air cools. (1.0°C/100 m)
- **Saturated adiabatic lapse rate (SALR)** - Rate at which rising parcel of saturated air cools. (0.5°C/100 m)
- **Dew point lapse rate** – Rate at which dew point decreases with height. (0.2°C/100 m)
- **Environmental lapse rate (ELR)** – Vertical change in temperature profile through still air.
Lapse Rates

- Difference between ELR and DALR/SALR

Lifting Condensation Level

- LCL: Lifting Condensation Level - level at which saturation is achieved
Forms of Condensation

- Dew
- Frost
- Frozen Dew
- Fog
 - Radiation
 - Advection
 - Upslope

Fogs